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Key Points 6 

• Information Theory allows characterizing information content of permeability data related to 7 

differing measurement scales. 8 

• An increase of the measurement scale is associated with quantifiable loss of information about 9 

permeability. 10 

• Redundant, unique and synergetic contributions of information are evaluated for triplets of 11 

permeability datasets, each taken at a given scale. 12 

 13 
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Abstract 15 

We employ elements of Information Theory to quantify (i) the information content related to data 16 

collected at given measurement scales within the same porous medium domain, and (ii) the 17 

relationships among Information contents of datasets associated with differing scales. We focus on 18 

gas permeability data collected over a Berea Sandstone and a Topopah Spring Tuff blocks, 19 

considering four measurement scales. We quantify the way information is shared across these scales 20 

through (i) the Shannon entropy of the data associated with each support scale, (ii) mutual information 21 

shared between data taken at increasing support scales, and (iii) multivariate mutual information 22 

shared within triplets of datasets, each associated with a given scale. We also assess the level of 23 

uniqueness, redundancy and synergy (rendering, i.e., the information partitioning) of information 24 

content that the data associated with the intermediate and largest scales provide with respect to the 25 

information embedded in the data collected at the smallest support scale in a triplet. 26 

Plain Language Summary  27 

Characterization of the permeability of a geophysical system, or part of it, is a key aspect in many 28 

environmental settings. Permeability of natural systems typically exhibits spatial variations and its 29 

spatially heterogeneous pattern is linked with the size of observation/measurement/support scale. As 30 

the latter becomes coarser, the system appearance is less heterogeneous. As such, sets of permeability 31 

data associated with differing support scales provide diverse amounts of information. In this 32 

contribution, we leverage on elements of Information Theory to quantify the information content of 33 

gas permeability datasets collected over a Berea Sandstone and a Topopah Spring Tuff blocks and 34 

associated with four measurement scales. We then characterize the nature of the information shared 35 

by the diverse datasets, in terms of redundant, unique and synergetic forms of information.  36 

1. Introduction 37 

Characterization of permeability of porous media plays a major role in a variety of hydrological 38 

settings. There are abundant studies documenting that permeability values and their associated 39 

statistics depend on a variety of scales, i.e., the measurement support (or data support), the sampling 40 

window (domain of investigation), the spatial correlation (degree of structural coherence) and the 41 

spatial resolution (rendering the degree of the descriptive detail associated with the characterization 42 

of a porous system) (see e.g., Brace 1984; Clauser, 1992; Neuman, 1994; Schad and Teutsch, 1994; 43 

Rovey and Cherkauer, 1995; Sanchez‐Villa et al., 1996; Schulze‐Makuch and Cherkauer, 1998; 44 

Schulze‐Makuch et al., 1999; Tidwell and Wilson, 1999a, b, 2000; Vesselinov et al., 2001a, b; Winter 45 

and Tartakovsky, 2001; Hyun et al., 2002; Neuman and Di Federico, 2003; Maréchal et al., 2004; 46 

Illman, 2004; Cintoli et al., 2005; Riva et al., 2013; Guadagnini et al., 2013, 2018 and references 47 

therein). Among these scales, we focus here on the characteristic length associated with data 48 

collection (i.e., support scale). 49 

In this context, experimental evidences at the laboratory scale (observation scale of the order 50 

0.1-1.0 m) suggest that the mean value and the correlation length of the permeability field tend to 51 

increase with the size of the data support, the opposite trend being documented for the variance (e.g., 52 

Tidwell and Wilson, 1999a, 1b, 2000). Similar observations, albeit with some discrepancies, are also 53 

tied to investigations at larger scales (i.e., 10-1000 m) (Andersson et al., 1988; Guzman et al., 1994, 54 

1996; Neumann, 1994; Schulze‐Makuch and Cherkauer, 1998; Zlotnik et al., 2000; Bulter and 55 

Healey, 1998a,b). We consider here laboratory scale permeability datasets which are associated with 56 

various measurement scales. 57 
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The above mentioned documented pattern suggests that the spatial distribution of permeability 58 

tends to be characterized by an increased degree of homogeneity (as evidenced by a decreased 59 

variance and an increased spatial correlation) as the support/measurement scale increases. At the same 60 

time, increasing the measurement scale somehow hampers the ability to detect locally low 61 

permeability values, as reflected by the observed increased mean value of the data. As an example of 62 

the kind of data we consider in this study to clearly document these features, Figure 1 depicts the 63 

spatial distribution of the natural logarithm of (normalized) gas permeabilities, i.e., ln( / )
i

i i
rr rY k k=  64 

(where 
ir

k  is gas permeability and 
irk  is the mean value of the data), collected across two faces of a 65 

laboratory scale block of (i) a Berea Sandstone (Tidwell and Wilson, 1999a) and (ii) a Topopah Spring 66 

Tuff (Tidwell and Wilson, 1999b) at four support scales 
ir  (see Section 2 for a detailed description). 67 

As a preliminary observation, one can note that increasing the measurement scale 
ir  yields a 68 

decreased level of descriptive detail of the heterogeneous spatial distribution of the system properties. 69 

It is important to note that a decreased level of details in the description of the system properties (e.g., 70 

ir
Y ) could hinder reliability and accuracy of further predictions of system behavior (in terms of, e.g., 71 

flow and solute transport patterns). It is therefore relevant to quantify the amount of loss (or of 72 

preservation) of the information about the system properties associated with a fine scale(s) of 73 

reference as the data support increases. 74 

Our study aims at providing an assessment and a firm quantification of these aspects upon 75 

relying on Information Theory (IT) (e.g., Stone, 2015) and the multiscale collection of data described 76 

above. We consider such a framework of analysis as it provides the elements to quantify (i) the 77 

information content associated with a dataset collected at a given scale as well as (ii) the information 78 

shared between pairs or triplets of datasets, each associated with a unique scale (while preserving the 79 

design of the measurement device). In this context, IT represents a convenient theoretical framework 80 

to properly assist the characterization of the way the information content is distributed across sets of 81 

measurements, without being confined to a linear analysis (relying, e.g., on analyses of linear 82 

correlation coefficients) or invoking some a priori assumption(s) about the nature of the heterogeneity 83 

of permeability (e.g., the characterization of the datasets through a Gaussian model). 84 

To the best of our knowledge, only a limited set of works consider relying on IT concepts to 85 

analyze scenarios related to processes taking place in porous media. Nevertheless, we note a great 86 

variety in the topics covered in these works, reflecting the broad applicability of IT concepts. These 87 

works include the study of Nowak and Guthke (2016), who focus on sorption of metals onto soil and 88 

the identification of an optimal experimental design procedure in the presence of multiple models to 89 

describe sorption, and the work of Boso and Tartakovsky (2018) who illustrate an IT approach to 90 

upscale/downscale equations of flow in synthetic settings mimicking heterogeneous porous media. 91 

Relaying on IT metrics, Butera et al. (2018) assess the relevance of non-linear effects for the 92 

characterization of the spatial dependence of flow and solute transport related observables. Bianchi 93 

and Pedretti (2017, 2018) develope novel concepts, mutuated by IT, for the characterization of 94 

heterogeneity within a porous system and its links to salient solute transport features. Wellman and 95 

Regenaur-Lieb (2012) and Wellman (2013) leverage on IT concepts to quantify uncertainty, and its 96 

reduction, about the spatial arrangement of geological units of a subsurface formation. Recently, 97 

Mälicke et al. (2019) combine geostatistics and IT to analyze soil moisture data (representative of a 98 

given measurement scale) to assess the persistence over time of the spatial organization the soil 99 

moisture, under diverse hydrological regimes. 100 
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Here, we focus on the aforementioned datasets of Tidwell and Wilson (1999a, b) who conducted 101 

extensive measurement campaigns collecting air permeability data across the faces of a Berea 102 

Sandstone and a Topopah Spring Tuff blocks, considering four different support/measurement scales 103 

(see Section 2 for details). While our study does not tackle directly issues associated with the way 104 

one can upscale (flow or transport) attributes of porous media, we leverage on such a unique and truly 105 

multiscale datasets to address research questions such as “How much information is lost as the support 106 

scale increases?” and “How informative are data taken at a coarser support scale(s) with respect to 107 

those associated with a finer support scale?” (see Section 3). In this sense, our study yields a unique 108 

perspective of the assessment of the value of hydrogeological information collected at differing 109 

scales. 110 

2. Dataset 111 

We consider the datasets provided by Tidwell and Wilson (1999a, b), who rely on a 112 

multisupport permeameter (MSP) to evaluate spatial distributions of air permeabilities across the 113 

faces of a cubic block of Berea Sandstone (hereafter denoted as Berea) and Topopah Spring Tuff 114 

(hereafter denoted as Topopah). Data are collected at uniform intervals with spacing = 0.85 cm 115 

across a grid of 24 × 24 and 36 × 36 nodes along each face (of uniform side equal to 19.5 cm and 116 

29.75 cm, to avoid boundary effects) of the Berea and the Topopah blocks, respectively. Four 117 

measurement campaigns are conducted, each characterized by the use of a MSP with a tip-seal of 118 

inner radius ir  (i = 1, 2, 3, 4) = (0.15, 0.31, 0.63,1.27) cm and outer radius 2 ir  (interested readers can 119 

find additional details about the MSP design and functioning in Tidwell and Wilson, 1997). While 120 

the precise nature and size of the support/measurement scale associated with a MSP is still under 121 

study for heterogeneous media (e.g., Goggin et al., 1988; Molz et al., 2003; Tartakovsky et al., 2000), 122 

hereafter we denote data associated with a given support/measurement scale by referring these to the 123 

associated value of ir . The ensuing dataset is then composed by 3456 and 6480 data points for each 124 

measurement scale, ir , for the Berea and the Topopah block, respectively (we exclude data for one 125 

of the faces of the Topopah block, due to some anomalies with respect to the other faces). We consider 126 

here the quantity ln( / )
i

i i
rr rY k k= , i.e., the natural logarithm of the air permeability normalized by the 127 

mean value (i.e., 
irk ) of the data of the corresponding sample. This dataset has been previously 128 

employed to assess the impact of measurement scale on key summary statistics (i.e., mean, variance, 129 

and variogram; see Tidwell and Wilson, 1999a,b; Lowry and Tidwell, 2005) and scaling of statistics 130 

of log permeability data and their increments (Riva et al., 2013) as well as to investigate relationships 131 

between permeability and visual attributes of rock samples (Tidwell and Wilson, 2002). 132 

The two types of rocks analyzed display distinct features. The Berea sample may be classified 133 

as a very fine-grained, well-sorted quartz sandstone. Following Tidwell and Wilson (1999a), visual 134 

inspection of the spatial distributions of 
ir

Y  (see, e.g., Figure 1) shows that the Berea sample exhibits 135 

a generally uniform spatial organization of permeabilities, devoid of particular features, with the 136 

exception of a mild stratification, thus allowing to consider this sample as a fairly homogenous 137 

system. Otherwise, the Topopah rock sample clearly exhibits a heterogenous structure whereas 138 

pumice fragments ( 23%  of the sample) are embedded in the surrounding matrix (see Figure 1). In 139 

general, the pumice is characterized by higher permeability values than the surrounding matrix. As 140 

such, the Topopah sample can be considered as a fairly heterogenous system, with a tendency to 141 

display a bimodal distribution of permeability values (see also Section 4.2). In this sense, the two 142 
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rock samples analyzed provide two clearly distinct scenarios for the analysis of the interplay of the 143 

information contained in datasets collected at diverse measurement scales. 144 

We note that the theoretical elements described in Section 3 refer to discrete variables. While 145 

corresponding theoretical elements are available also for continuous variables, these are characterized 146 

by a less intuitive and immediate interpretation (e.g., Entropy could be negative, see Section 3). This 147 

leads us to treat 
ir

Y  as a discrete variable, a modeling choice which is consistent with several previous 148 

studies (see, e.g., Ruddell and Kumar, 2009; Gong et al., 2013; Nearing et al., 2018 and references 149 

therein). 150 

3. Methodology 151 

3.1 Information Theory 152 

Considering a discrete random variable, X, one can quantify the associated uncertainty through 153 

the Shannon Entropy 154 

1

1

( ) ln( )
N

i i

i

H X p p −

=

=  (1) 155 

where N  is the number of bins used to analyze the outcomes of X; and ip  is the probability mass 156 

function and 
1ln( )ip −

 is the (so-called) Information associated with the i-th bin (see, e.g., Shannon, 157 

1948). Note that the information in (1), i.e., 
1ln( )ip −

, is linked to the degree of surprise for a given 158 

outcome to take place in the i-th bin, i.e., the higher (lower) the probability ip , the lower (higher) the 159 

associated surprise for an outcome related to the i-th bin. We employ the natural base for the logarithm 160 

in (1), thus leading to nats as unit of measure for entropy and for the IT metrics we describe in the 161 

following. While other choices can be made (relying, e.g., on a base two logarithm), the nature and 162 

meaning of the metrics we illustrate does not change. The Shannon entropy can be interpreted as a 163 

measure of the uncertainty associated with X, i.e., ( )H X  is largest and equal to ln( )N  in case ip  is 164 

uniform across all bins (i.e., 1/ip N= ), while it is zero when outcomes of X reside only within a 165 

single bin. In our study, samples drawn from the population of the random variable X are identified 166 

with values 
ir

Y  and Shannon entropy can also be interpreted as a measure of the degree of 167 

heterogeneity of the system. In this sense, considering a support scale ir , if the collected data (which 168 

are spatially distributed over the system) would cluster into one (or only a few) bin(s), one could 169 

interpret the system as homogeneous (or nearly homogeneous) at such a scale. 170 

The information content shared by two random variables, i.e., 1X  and 2X , is termed bivariate 171 

mutual information and is defined as 172 

,

1 2 ,

1 1

( ; ) ln
N M

i j

i j

i j i j

p
I X X p

p p= =

 
=   

 
  (2) 173 

where N  and M  represent the number of bins associated with 1X  and 2X , respectively; ip  and jp  174 

are marginal probability mass functions associated with 1X  and 2X , respectively; and ,i jp  is the joint 175 

probability mass function of 1X  and 2X . The bivariate mutual information measures the average 176 

reduction in the uncertainty (as quantified through the Shannon entropy) about one random variable 177 

that one can obtain by knowledge on the other variable (Gong et al., 2013 and references therein). As 178 
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such, the bivariate mutual information (a) vanishes for two independent variables and (b) coincides 179 

with the entropy of either of the two variables when one variable fully explains the other one, i.e., 180 

2 1 1 2( ) ( ) ( ; )H X H X I X X= = . In light of the latter observations, it is clear that the bivariate mutual 181 

information can be also interpreted as a measure of the degree of dependence between 
1X  and 

2X . 182 

When considering three discrete random variables, it is possible to quantify the amount of 183 

information that two of these (termed as sources, i.e., 
1SX  and 

2SX ) share with the third one (termed 184 

as target variable, i.e., TX ) upon evaluating the following multivariate mutual information 185 

1 2

, ,

, ,

1 1 1 ,

( , ; ) ln
N M W

i j k

S S T i j k

i j k i j k

p
I X X X p

p p= = =

 
=   

 
  (3) 186 

Here, N , M , and W  represent the number of bins associated with 
1SX , 

2SX  and TX , respectively; 187 

kp  is the probability mass function of TX ; ,i jp  is the joint probability mass function of 
1SX  and

2SX188 

; and , ,i j kp  is the joint probability mass function of 
1SX ¸ 

2SX , and TX . Relying on the partial 189 

information decomposition or information partitioning (Williams and Beer, 2010;), the multivariate 190 

mutual information in (3) can be partitioned into unique, redundant, and synergetic contributions, i.e., 191 

1 2 1 2 1 2 1 2
( , ; ) ( ; ) ( ; ) ( , ; ) ( , ; )S S T S T S T S S T S S TI X X X U X X U X X R X X X S X X X= + + +  (4) 192 

Here, 
1

( ; )S TU X X  and 
2

( ; )S TU X X  represent the amount of information that is uniquely provided to 193 

the target TX  by 
1SX  and 

2SX , respectively (i.e., the information 
1

( ; )S TU X X  cannot be provided to 194 

TX  by knowledge on 
2SX , a corresponding observation holding for 

2
( ; )S TU X X ); the redundant 195 

contribution 
1 2

( , ; )S S TR X X X  is the information that both source variables provide to the target (i.e., 196 

it is the amount of information transferable to TX  that is contained in both 
1SX  and 

2SX ); and the 197 

synergetic contribution
1 2

( , ; )S S TS X X X  is the information about TX  that knowledge on 
1SX  and 

2SX  198 

brings in a synergic way. Note that the latter contribution corresponds to the amount of information 199 

that (possibly) emerges by simultaneous knowledge of the two sources and through an analysis of 200 

their joint relationship with TX , i.e., it would not appear by knowing both 
1SX  and 

2SX  while 201 

analyzing their individual relationship with TX  separately. All components in (4) are positive 202 

(Williams and Beer, 2010). Figure 2 provides a graphical depiction in terms of Venn diagrams of the 203 

above information components in a system characterized by two sources and a target variable. 204 

The bivariate mutual information shared by the target and each source can be written as 205 

1 1 1 2

2 2 1 2

( ; ) ( ; ) ( , ; )

( ; ) ( ; ) ( , ; )

S T S T S S T

S T S T S S T

I X X U X X R X X X

I X X U X X R X X X

= +

= +
 (5) 206 

Note that (5) reflects the nature of the information that is shared by the target and each of the sources, 207 

when these are taken separately, i.e., no synergy can be detected here. We also remark that one should 208 

expect the emergence of some redundancy of information when the two sources are correlated. 209 

An additional element of relevance for the aim of our study is the interaction information 210 

https://doi.org/10.5194/hess-2019-628
Preprint. Discussion started: 29 November 2019
c© Author(s) 2019. CC BY 4.0 License.



7 
 

1 2 1 2 1

2 1 2

( ; ; ) ( ; | ) ( ; )

( ; | ) ( ; )

S S T S T S S T

S T S S T

I X X X I X X X I X X

I X X X I X X

= − =

= −
 (6) 211 

Here, ( ; | )
i jS T SI X X X  is the bivariate mutual information shared by source 

iSX  (i =1, 2) and the 212 

target, conditional to the knowledge of source 
jSX  (j = 2, 1). Note that ( ; | )

i jS T SI X X X  can be 213 

evaluated in a way similar to (2) upon relying on the conditional probability for 
TX . Williams and 214 

Beer (2011) show that 215 

1 2 1 2 1 2
( ; ; ) ( , ; ) ( , ; )S S T S S T S S TI X X X S X X X R X X X= −  (7) 216 

According to (7), the bivariate interaction information could be either positive, i.e., when synergetic 217 

interactions prevail over redundant contribution, or negative, i.e., when the degree of redundancy 218 

overcomes the synergetic effects. 219 

Inspection of (4)-(7) reveals that an additional equation is required to evaluate all components 220 

in (4). Various strategies have been proposed in this context (e.g., Williams and Beer, 2010; Harder 221 

et al., 2013; Bertschinger et al., 2014; Griffith and Koch, 2014; Olbrich et al., 2015; Griffith and Ho, 222 

2015). We rest here on the recent partitioning strategy formalized by Goodwell and Kumar (2017), 223 

due to its capability of accounting for the (possible) dependences between sources when evaluating 224 

the unique and redundant contributions. The rationale underpinning this strategy is that (i) each of the 225 

two sources can provide a unique contribution of information to the target even as these are correlated, 226 

and (ii) redundancy should be lowest in case of independent sources. The redundant contribution can 227 

then be evaluated as (Goodwell and Kumar, 2017) 228 

1 2 1 2 1 2 1 2min min( , ; ) ( , ; ) ( ( , ; ) ( , ; ))S S T S S T s MMI S S T S S TR X X X R X X X I R X X X R X X X= + −   (8a) 229 

with 230 

1 2 1 2

1 2 2 1

1 2

1 2

min ( , ; ) max(0, ( ; ; ));

( , ; ) min( ( ; ), ( ; ));

( ; )
;

min( ( ), ( ))

S S T S S T

MMI S S T S T S T

S S

s

S S

R X X X I X X X

R X X X I X X I X X

I X X
I

H X H X

= −

=

=

   (8b) 231 

Goodwell and Kumar (2017) termed (8) as a rescaled measure of redundancy whereas (a) 232 

1 2min ( , ; )S S TR X X X  represents the lowest bound for redundancy, which is set on the basis of the 233 

rationale that the minimum value of redundancy must at least be equal to 
1 2

( ; ; )S S TI X X X−  in case 234 

1 2
( ; ; )S S TI X X X  < 0 (thus also ensuring positiveness of the synergy; see (7)); (b) 

1 2
( , ; )MMI S S TR X X X  235 

is an upper bound, consistent with the rationale that all information from the weakest source is 236 

redundant; and (c) sI  accounts for the degree of dependence between the sources, i.e., 0sI =  and 237 

1 2 1 2min( , ; ) ( , ; )S S T S S TR X X X R X X X=  for independent sources, while 1sI =  and redundancy in (8) 238 

attains its upper limit value, 
1 2

( , ; )MMI S S TR X X X , in case of a complete dependency (i.e., 239 

1 2
( )S SX f X=  or vice versa) between the sources. Once the redundancy has been evaluated, all of the 240 

other components in (4) can be determined. 241 

We emphasize that, despite some additional complexities, analyzing the partitioning of the 242 

multivariate mutual information provides valuable insights on the way information is shared across 243 
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three variables, these being here permeability data associated with three diverse support scales. These 244 

aspects cannot be grasped by the mere inspection of the sets of bivariate mutual information that can 245 

be evaluated from the collection of data pertaining to the three variables analyzed. 246 

3.2 Implementation Aspects 247 

Evaluation of the quantities introduced in Section 3.1 is accomplished according to three main 248 

steps. We employ the Kernel Density Estimator (KDE) routines in Matlab2018© to estimate the 249 

continuous counterparts of the probability mass functions 
ip , jp , ,i jp , and , ,i j kp  and assess the 250 

associated probability density functions, i.e., pdfs. This step enables us to smooth and regularize the 251 

available finite datasets. We then discretize the ensuing pdfs to evaluate the associated probability 252 

mass functions. Note that this two-step procedure allows us to obtain results that are more stable (with 253 

respect to the number of bins employed) than those that one could obtain upn discretizing directly the 254 

available finite datasets. As a final step, we evaluate the metrics detailed in Section 3 by treating 255 

separately the multi-scale measurements on each face and then averaging the ensuing face-related 256 

results for each of the two rock samples. The benefit of employing this approach are especially critical 257 

when considering the Topopah rock, whereas pooling the data of all faces as a unique sample hindered 258 

the emergence of the bimodal behavior (i.e., the permeability values corresponding to the peaks of 259 

the bimodal distributions are slightly different depending on the face considered and the joint 260 

treatment of the data from all faces yielded a nearly unimodal distribution). For the datasets available 261 

we found that a binning scheme relying on 100 bins, uniformly distributed within the range delimited 262 

by the lowest and largest values detected considering all datasets associated with both rocks ensures 263 

convergence of the results illustrated in Section 4 (i.e., we employ the same specific binning for the 264 

Berea and the Topopah rock samples to assist quantitative comparison of the results). Note that we 265 

consistently employ this binning for the evaluation of all metrics introduced in Section 2. 266 

We remark that the bivariate and multivariate mutual information metrics are evaluated by 267 

focusing on the joint probability mass function grounded on the multi-scale data collected at the same 268 

location on the sampling grids.  269 

4. Results 270 

Figure 3 depicts the probability mass function ( )
ir

p Y  for i = 1 ( 1r ; black symbols), 2 ( 2r ; red 271 

symbols), 3 ( 3r ; blue symbols), and 4 ( 4r ; green symbols) for the (a) Berea and (b) the Topopah rock 272 

samples. For both rocks the ( )
ir

p Y  associated with only one face is depicted (similar patterns are 273 

noted for all of the remaining faces). Figure 3c depicts the Shannon entropy ( )
ir

H Y  as a function of 274 

the MSP support scale ir  for the Berea (diamonds) and the Topopah (circles) samples. Figure 3d 275 

depicts the bivariate mutual information between data collected at two distinct support scales. This 276 

metric is normalized by the entropy of the data associated with the smaller support scale, i.e., 277 
*( ; ) ( ; ) / ( )

i j i j ir r r r rI Y Y I Y Y H Y=  with j > i, for i = 1 (blue diamonds) and 2 (green diamonds), results for 278 

the Berea (diamonds) and the Topopah (circles) samples are reported. 279 

Inspection of Figure 3a-b reveals that distributions related to increasing values of ir  tend not to 280 

encompass extreme values (in particular the low ones) of Y . This observation supports the fact that 281 

increasing ir  favors a homogenization of the permeability values and suggests that the response of 282 

the MSP tends to be only weakly sensitive to the less permeable portions of the rock that are 283 

encompassed within a given measurement scale. As a consequence, the the ( )
ir

p Y  associated with 284 
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increasing 
ir  are characterized by a reduced number of populated bins, this feature being in turn 285 

reflected in the observed reduction of ( )
ir

H Y  with increasing 
ir  (Figure 3c) for both rock samples. 286 

This result can be interpreted as a signature (see also the discussion about (1) in Section 3.1) of the 287 

effect of increasing 
ir , which yields a decrease of (i) the uncertainty about the spatial distribution of 288 

the values of 
ir

Y  and (ii) the ability of capturing the degree of spatial heterogeneity of Y. Note that 289 

Figure 3c suggests that the value of ( )
ir

H Y , given 
ir , associated with the Topopah sample is always 290 

higher than its counterpart associated with the Berea rock. This outcome is consistent with the higher 291 

heterogeneity displayed by the former sample, where the spatial distribution of 
ir

Y  is affected by an 292 

increased level of uncertainty as compared to its Berea-based counterpart. 293 

Otherwise, two distinct behaviors emerge with regard to the location of the peak(s) of the 294 

distributions: (i) the location of the peak of the distributions is virtually insensitive to ir  for the Berea; 295 

while (ii) the two peaks of the bimodal distributions of the Topopah sample display a clear tendency 296 

to migrate towards higher permeability values as ir  increases. These observations are consistent with 297 

the homogeneous nature of the Berea and the two-material (pumice and matrix being high and low 298 

permeable, respectively) type of heterogeneity displayed by the Topopah sample. It is also in line 299 

with the previously noted weak sensitivity of the MSP measurements to region of low permeability. 300 

With reference to the Berea sample, if a measurement taken at a given location with a small ir  is 301 

close to the average value (i.e., 
ir

Y  is close to zero in our setting), it is likely that the same behavior 302 

is observed also for larger 
ir  due to the homogeneity of the sample. Otherwise, in the case of the 303 

Topopah sample there are more chances that increasing ir  (hence involving larger volumes of the 304 

rock) yields a shift of the ensuing measurements toward higher values. 305 

Inspection of Figure 3d reveals that, given a reference support scale ir , the mutual information 306 

shared with measurements taken at larger support scales jr  decreases with increasing jr  for both 307 

rock samples. In other words, the representativeness for system characterization of the sets of data 308 

associated with increasingly coarse support scale diminishes, as compared to the data collected at the 309 

given reference scale. At the same time, we note that the way in which *( ; )
i jr rI Y Y  decreases with jr  310 

is very similar for (i) the two analyzed reference support scales, i.e., 1r  and 2r , and (ii) for the two 311 

considered rock types. We interpret this result as a sign of (at least qualitative) consistency in the way 312 

information is shared between datasets of measurements associated with increasing size of ir , despite 313 

the different geological nature of the two types of samples analyzed. Otherwise, Figure 3d indicates 314 

that the (normalized) mutual information *( ; )
i jr rI Y Y  is always lower in the Topopah than in the Berea 315 

system. This result provides a quantification of the qualitative observation that there is an overall 316 

decrease of the representativeness of the datasets associated with increasing data support (with respect 317 

to data collected with smaller ir ) as the system heterogeneity becomes stronger. 318 

Figure 4 depicts the results of the information partitioning procedure detailed in Section 2.3 319 

considering the Berea sample and two triplets of datasets 
1 2

( , ; )
i i ir r rY Y Y
+ +

, with ir =  (a) 1r  and (b) 2r . 320 

Corresponding results for the Topopah sample are depicted in (c) for 1ir r=  and (d) for 2ir r= . For 321 

ease of comparison between the results, we normalize the unique, synergetic and redundant 322 

contributions in (4) by the multivariate mutual information of the corresponding triplet, e.g., 323 
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1 1 1 2

*( ; ) ( ; ) / ( , ; )
i i i i i i ir r r r r r rU Y Y U Y Y I Y Y Y
+ + + +

= , 
2 2 1 2

*( ; ) ( ; ) / ( , ; )
i i i i i i ir r r r r r rU Y Y U Y Y I Y Y Y
+ + + +

= ; 324 

1 2 1 2 1 2

*( , ; ) ( , ; ) / ( , ; )
i i i i i i i i ir r r r r r r r rR Y Y Y R Y Y Y I Y Y Y
+ + + + + +

= , 
1 2 1 2 1 2

*( , ; ) ( , ; ) / ( , ; )
i i i i i i i i ir r r r r r r r rS Y Y Y S Y Y Y I Y Y Y
+ + + + + +

= . 325 

Results in Figure 4a-b suggest that for the Berea sample: (i) most of the multivariate information is 326 

redundant, a finding that can be linked to the dependence detected between the sets of data associated 327 

with the two coarser support scales (see, e.g., Figure 3d); (ii) the synergetic information is practically 328 

zero for both triplets considered, i.e., the simultaneous knowledge of the system at two coarser scales 329 

does not provide any additional information; (iii) data associated with the middle (in the triplets) 330 

support scale provides a non-negligible unique information content, the latter being less pronounced 331 

for the data referring to the most coarse support (in the triples). These results (i.e., high redundancy 332 

and high/low uniqueness for the middle/largest support scale) suggest that, considering the depiction 333 

of the system rendered at the finest support scale, the information provided by the investigations at 334 

the coarsest support scale is mostly contained by the information provided by the data collected at the 335 

intermediate scale. This element suggests a nested nature of the information linked to data collected 336 

at progressively increasing scales with respect to the information contained in the data associated 337 

with the smallest support scale. This finding can be linked to the homogeneous nature of the Berea 338 

sample, whereas the characterization at diverse scales does not change dramatically (e.g., note the 339 

similarities in the spatial patterns of 
ir

Y  in Figure 1 for the Berea sample as a function of ir ), thus 340 

promoting (a) the redundancy of information associated with measurements at the intermediate and 341 

lager scales and (b) the uniqueness of information revealed for the intermediate scale. 342 

Otherwise, inspection of Figure 4c-d reveals that for the Topopah rock sample: (i) most of the 343 

multivariate information coincides with the unique information associated with the intermediate 344 

scale; (ii) the redundant and unique contribution associated with the largest scale are still non-345 

negligible, yet being substantially smaller than the uniqueness contribution provided by the 346 

intermediate scale; (iii) there is practically no synergetic information. This set of results descends 347 

from the moderate or marked discrepancies displayed by 
ir

Y  data as ir  increases by one or two sizes, 348 

respectively (e.g., see the faces depicted in Figure 1 for the Topopah sample). In other words, relying 349 

on a device such as the MSP to obtain permeability data enables sampling a volume of the rock 350 

according to which the majority of the multivariate information in a triplet is associated with a 351 

significant unique contribution of the intermediate scale, the information related to the largest scale 352 

still being weakly unique and weakly redundant. 353 

5. Conclusions 354 

We rely on elements of Information Theory to interpret multi-scale permeability data collected 355 

over blocks of Berea Sandstone and a Topopah Spring Tuff, representing a nearly homogeneous and 356 

a heterogeneous porous medium composed of a two-material mixture, respectively. The unique multi-357 

scale nature of the data enables us to quantify the way information is shared across measurement 358 

scales, clearly identifying information losses and/or redundancies that can be associated with the joint 359 

use of permeability data collected at differing scales. Our study leads to the following major 360 

conclusions: 361 

1. An increase in the characteristic length associated with the scale at which the laboratory scale 362 

(normalized) gas permeability data are collected corresponds to a quantifiable decrease in the 363 

Shannon entropy of the associated probability mass function. This result is consistent with 364 

the qualitative observation that the ability of capturing the degree of spatial heterogeneity of 365 

the system decreases as the data support scale increases. 366 
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2. The (normalized) bivariate mutual information shared between pairs of permeability datasets 367 

collected at (i) a fixed fine scale (taken as reference) and (ii) larger scales decreases in a 368 

mostly regular fashion independent from the size of the reference scale, once the bivariate 369 

mutual information is normalized by the Shannon entropy of the data taken at the reference 370 

scale. This result highlights a consistency in the way information associated with data at 371 

diverse scales is shared for the instrument and the porous systems here analyzed. 372 

3. As the degree of heterogeneity of the system increases, we document a corresponding 373 

increase in the Shannon entropy (given a support scale) and a decrease in the values of the 374 

normalized bivariate mutual information (given two support scales) between permeability 375 

data collected at the differing measurement scales. 376 

4. Results of the information partitioning of the multivariate mutual information shared by 377 

permeability data collected at three increasing support scales for the Berea sandstone sample 378 

exhibit a marked level of redundancy and high/low uniqueness for the data collected at the 379 

intermediate/coarser scale in the triplets with respect to the data associated with the finest 380 

scale. This result can be linked to the fairly homogeneous nature of the sample, that is also 381 

reflected in the moderate variation of the observed (normalized) gas permeability values with 382 

increasing size of the support scale. 383 

5. Information partitioning for the Topopah tuff sample indicates the occurrence of a still 384 

significant amount of unique information associated with the data collected at the 385 

intermediate scale, while the redundant portion and the unique contribution linked to the 386 

largest scale in a triplet are clearly diminished. This result descends from the heterogeneous 387 

structure of the Topopah porous system, where the recorded (normalized) gas permeabilities 388 

display moderate or marked discrepancies as ir  increases by one or two sizes, respectively. 389 

6. For both rock samples considered, the simultaneous knowledge of permeability data taken at 390 

the intermediate and coarser support scales in a triplet does not provide significant additional 391 

information with respect to that already contained in the data taken at the fine scale, i.e., the 392 

synergic contribution in the resulting datasets is virtually zero. 393 

Given the nature of the approach we employ, the latter is potentially amenable to be transferred to 394 

analyze settings involving other kinds of datasets associated with diverse hydrogeological quantities 395 

(including, e.g., porosity or sorption/desorption parameters) or considering measurement/sampling 396 

devices of a diverse design. Future developments could also include exploring the possibility of 397 

embedding the approach within the workflow of optimal experimental design and/or data-worth 398 

analysis strategies. 399 
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Figures 581 

 582 

Figure 1. Examples of spatial distributions of the natural logarithm of normalized gas permeability,  583 

ir
Y , for two faces of a cubic block of Berea Sandstone (first and second rows) and Topopah Spring 584 

Tuff (third and fourth rows) taken with four increasing support scales (columns, left to right).  585 
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 587 

Figure 2. Venn diagram representation of the Information Theory concepts considering two sources, 588 

i.e., 
1SX  and 

2SX , and a target variable, TX . Areas of the circles are proportional to Shannon Entropy 589 

(i.e., 
1

( )SH X , 
2

( )SH X  and ( )TH X ); overlaps of pairs of circles reflect bivariate Mutual Information 590 

(i.e., 
1

( ; )S TI X X , 
2

( ; )S TI X X , and 
1 2

( ; )S SI X X ); and the strength of the multivariate Mutual 591 

Information (i.e., 
1 2

( , ; )S S TI X X X ) corresponds to the region delimited by the thick black curve. 592 

Unique (i.e., 
1

( ; )S TU X X  and 
2

( ; )S TU X X ), Synergetic (i.e., 
1 2

( , ; )S S TS X X X ), and Redundant (i.e., 593 

1 2
( , ; )S S TR X X X ) components are also highlighted, as well as the Interaction Information (i.e., 594 

1 2
( ; ; )S S TI X X X ). 595 
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 597 

 598 

Figure 3. Probability mass function of the logarithm of normalized gas permeability, ( )
ir

p Y , for 599 

various support scale, ir  (i = 1 (black), 2 (red), 3 (blue), 4 (green)) for (a) the Berea and (b) the 600 

Topopah samples; (c) Shannon entropy ( )
ir

H Y  versus ir  for the Topopah (circles) and the Berea 601 

(diamonds) samples; (d) bivariate normalized mutual information *( ; ) ( ; ) / ( )
i j i j ir r r r rI Y Y I Y Y H Y=  602 

between data at a reference support scale, 
ir

Y , and data at larger support scales, 
jrY , for i = 1 (blue 603 

symbols), 2 (green simbols), considering the Berea (diamonds) and the Topopah (circles) rock 604 

samples. 605 
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 607 

Figure 4. Information Partitioning of the multivariate Mutual Information, 
1 2

( , ; )
i i ir r rI Y Y Y
+ +

, 608 

considering two triplets of data and 
ir =  (a) 

1r  and (b) 2r  for the Berea sample and 
ir =  (c) 

1r  and (d) 609 

2r  for the Topopah sample. For ease of comparison, we show the redundant, unique, and synergetic, 610 

contributions normalized by 
1 2

( , ; )
i i ir r rI Y Y Y
+ +

.  611 

 612 
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